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Size distribution of vesicles with topological defects
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We study a diluted suspension of nearly spherical vesicles near the temperature where the in-plane orienta-
tional (hexatig order is destroyed through an unbinding of pairs of disclinations. We focus on the size
distribution of the vesicles, extending a well known theory for fluid membranes. At sufficiently low tempera-
tures, the vesicles are in the hexatic phase, with, however, twelve @dsitive disclinations due to a
topological constraint. Above a certain temperature, additional unbound pairs of disclinations emerge. We
expect an unusual vesicle size distribution with a typical vesicle size, which diverges like the hexatic correla-
tion length just above the liquid-to-hexatic transition temperafi$&063-651X98)51004-3

PACS numbes): 87.22.Bt, 02.40-k, 61.72.Lk

We consider a system of water and a fixed volume frac- Upon lowering the temperature or varying external condi-
tion of amphiphilic molecules, like phospholipids, which as-tions such as salt concentration or addition of cosurfactants
semble themselves into a secondary structure consisting @fis picture could change, provided the membranes undergo
bilayers. This system will show up a tertiary structure—thean internal liquid to hexatic transition to a phase with quasi-
conformation of the bilayers. Depending on temperature ongpng-ranged orientational ordé4—11]. Near the transition,

finds vesicles, multilamellar phases, onions, and bicontinuthe orientational correlation length provides a typical length
ous phases. At sufficiently high temperatures, the bilayer bescale, diverging right at the transition.

haves as a two-dimensional curved fluid, well described by Tangential orientational order on a curved manifold is
the Helfrich Hamiltonian(see, e.g., Ref.1]). In this model,  frustrated and might have topological defe@isclinations.
the energy per area of a membrane is proportional to th&hese topological defects are uniquely characterized by a
square of the mean curvature. Since the curvature energy éhargelike quantity—the total change of the orientation
scale invariant, the tertiary structure has no preferred lengtvhile going around the defect. The sum of all charges on a
scale or typical size. The distribution of the length scales isnanifold is constrained and depends on the topology of the
determined by logarithmic corrections mainly due to shapénanifold—it is given by>q;=fdAK, where the topological
fluctuations. invariant fdAK is the integral over the Gaussian curvature.
The size distributionn(N) (the numerical density of According to the Gauss-Bonnet theordmAK=4(1—g)
vesicles of sizeN) of a diluted suspensiofideal mixtur¢ of  \whereg is the genus of the surfadaumber of handlgs
vesicles is given by a Boltzmann factd], Hexatic order on a manifold with spherical topology has
an excess of 12 positive disclinations(charge
N(N)=2Zy exp(— uN)=exp(—uN=Fy). @) q=+ w/3)—recalling a soccerball. A periodic bicontinuous
N is the number of amphiphilic molecules of a vesigleis phase(a configuration §imillar to the Fermi surfa<_:e of copper
the Lagrange multiplier to the constrained volume fracgpon N K Space—a plumber’s nightmarias an extensive number
(V denotes the volume,y the molecular volume of _(negatlve} excess charges proportional to the number of
vENn(N)N=V¢ andZ, is the partition function of the in- Unit cells.

ternal degrees of freedom of a single vesicle of $izeF . The . toprn(l;)giclzal bdlefectsh inteLac_t throu_gh the TWO'
the corresponding free energy. The temperature is set to Or%mepsmna Coulomb law, where the interaction grows loga-
throughout the paperkgT=1). rithmically with distance. These interactions are screened in

In an exhaustive study, Morse and Milng] calculated the presencz OI] sma}lller dip.°|6520f| d?fe(:lma%ye-lljiin:k'el
the logarithmic contributions to the free energy of a nearlyscreeinlng and shape ug:tuatlorg& - 3 ?Ct' a gisc 'L‘I?‘“O”
spherical fluid vesicle and foun&~(7/6)InN and for the can lower its energy by a shape deformatiguckling

size distribution of a diluted suspension of spherical vesiclesU’l.o]' Pasitive _defects tend to concentrate in regions ‘.N'th
positive Gaussian curvature, while negative disclinations

n(N)=N~"% exp(— uN). (2)  prefer saddle-shaped regions with negative curvature.
The main part of this paper is devoted to the detailed
Within this theory most of the vesicles have a size near thanalysis of these ideas—we study the finite size behavior of
microscopic cutoff; there are only few large vesicles. Dy-a Sine-Gordon field theory on a sphere and the coupling
namical aspects of the equilibration of a initially monodis- between fluctuations of the hexatic order and shape fluctua-
persive ensemble are a concern 8f tions. Finally we will give arguments for an unusual size
distribution with a typical length scale proportional to the
correlation length of the hexatic order.

*Present address: InstitutrfTheoretische Physik 1V, Heinrich— Sine-Gordon field theoryn order to model hexatic order-
Heine—UniversitaDusseldorf, Universitisstrasse 1, D-40225 By ing on a membrane, we should consider the field of angles
seldorf, Germany. modulo 60°, describing the direction of the nearest neighbors
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of a lipid molecule. This orientational field can be decom- 7 =87k~ (xA)Z+12+12 I 12+ (xA)Z+12]
posed into a smooth spin-wave part and the vortices. The

latter behave as a Coulomb gas, which can be transformed, —12 In(xA), (7)
using a Hubbard—Stratonovich transformatiege, e.g., Ref.

[12]), into a Sine-Gordon field theory. The above— mentloneqJSIng Eq.(5). The field¢ has a mass with

spinwave part is exactly canceled by the transformation. We

end up with a Hamiltonian consisting of the elastic energy

and a covariant Sine-Gordon functional with an extra cou- 7\? ™ 7\? 2

pling of the Sine-Gordon field (related to the internal elec- T=KaX| 3] €O§ 3 Po|=Ka| 3 X+

tric potential of the chargeso the Gaussian curvature due to

the frustration of tangential ord¢®,12):

3K\?
—) . (8

™

Approaching the critical point from above, the fugaciy
vanishes. For an infinite radil6— 0, 7 is proportional to the
H= fdAg”a Do P— Xf dA c05< cp) fugacity of the defectx. For zero fugacity, on the other
2Ka 3 hand, 7 is proportional to &/ =12/(47R?), which is the
numerical density of the excess charges. keso the sys-
+if dAK(I)‘Fsz dAC? (3)  tem has a hexatic correlation lengfk 7~ 2, which grows
with vanishingx until it saturates at a value of the order of
the mean distance of the excess charges.

We integrate over the fields, ¢ in two steps in order to
obtain additional information about the effective elastic con-
stants. Eliminating the fielg by performing a Gaussian in-
tegration we obtain a new effective action for the shape fluc-
tuations(up to a constant

where K, is the hexatic stiffness and is a microscopic
length witha?N=A=47R?. g'! denotes the inverse metric
tensor on the manifold with indices,je{1,2, and dA
=d?0\/g the surface area elemefd.is the mean curvature
(the trace of the curvature tensor divided by jvemd « the
bending rigidity.x=a " ?exp(—¢) is the fugacity of the de-
fects, thuse is the energy needed to create the core of a

defect. K

We will describe shape fluctuations in normal gauge Hund,eﬁzﬁ ;ﬂ [(+1)=2]1(1+1)] 7 |

8X(0)=n(a)N(0), 4 L Ka g [0+ 27

>

2
R s WP} 9
2R B (TR ©

where X is the parametrization of the rigid spheis, the
corresponding normal vector, ang o) the normal displace-
ment. where we expandeg into spherical harmonics. For modes
For a geometry with constant nonzero Gaussian curvatur@ith |(1+1)<7R? ie., modes with a wavelength larger
K (like a spherg the Sine—Gordon function&B) has a non- than the bare hexatic correlation length, the effective bending
trivial spatially homogeneous saddle poist/ 5® =0: rigidity is approximatelyx.=x+Ka/(7R). Thus the pres-
ence of orientational order stiffens the vesicle on longer

- - length scales.
=X sin(—CDO +iK=0. (5) On the other hand, if we eliminate the undulation modes
3 3 , i . ; . ; )
first, we find an effective actiofagain using spherical har-
monicy

This equation has a purely imagindrd/3] solution®,. We
expand the functional3) around the saddle point up to the

second order inp=®—®d, and in the shape fluctuations
and obtain 2,14 Heft= 25 |>2m T10+1) +l) L1, ml?
K 2 2
H=Fo+ 5 | dAAp(An+2C?y) lE (14+ 1)+ 7R?]| @), |2+ Fona Fo.

(10
+if dAC(A7+2C2p) e

where F,q is the free energy of the undulation modes of a
. J dAo(—Ag)+ 792, (6) spherical membrane, aIregdy calcglatemﬂ?l]"nto behave like
Funa~ (8/3)I0gA. The 7, ,, integration extends over the
=2 modeg 2] due to the translational and scale invariance of
where we ignored a terrdf d Acos@@®y/3) as a contribution the curvature energy. A finite bending rigidity essentially
to the surface tensioftL,2]. A,C,dA now refer to the rigid  shifts the mass of the-field r.4=7+Ka/(xkR%), which is
sphere, thusC=—1/R and A is the spherical Laplacian, equivalent to a reduction of the hexatic correlation length
which has a spectrurR™2I(1+1),1=0,1,2 . . . with multi- [12]. A small bending rigidity promotes the creation of de-
plicity 21+1. fects due to buckling, thus increases the density of defects.
Fy is the value of the Hamiltonian at the saddle point: We vyield the following free energy for a vesicle:
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KaL2 kL2

whereL=R/a>1 is a UV cutoff (L?xA).

For x—0 the coefficientrR?> does not depend on the
vesicle sizeA. This allows a simple expansion of the free
energy for large_. By contrast, for finitex the coefficients of

the L expansion itself depend on the si&e which compli-

cates the discussion considerably and will be postponed to

the next paragraph.
We examined the free energy analyticdllyp] for L large
andx—0, A,K,,x= const and found

F=const. 2+ Fq— 12 InL2

TKA3+Kalk 1
%_5 InL2+ .. -, (12)

where we used the small argument behavior of &g. The
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Fs=3(1R*+Kp/k)

2
(16)

+ L (rR%+ Kl )N ————
2 al k) (TRZ-I-KA/K

We have 7R?=(7Ka/36)J(xA)?+12 and L?
=XA exp(e)/4m using the(previous definitionsL=R/a and
x=a " 2exp(—e). Approaching the critical point from above,
the core energy diverges and the terms proportional é0
become the dominant contributions to the free energy

e %\/(XA)2+122+f1 e 17)

where ef, consists of constant terms proportionaléoWe
match this expression fox—0 with (13) and obtainf;
=K,/(2k)—11. The expression for the free energy can be
written asF~ e(R/£)?+ - - -, which is roughly the number
of defects times their core energ§= T;f}’z is the correlation
length of the hexatic order Keeping only the dominant

term, the size distribution readgxA) =exd —f(xA)] with

term constL_? simply shifts the chemical potential; however, f(xA) =€ V(xA)?+ 12— uxA+efy - (18)
this does not affect the size distribution of vesicles, since the

volume fraction, not the chemical potential is held fixed. vyhere we wrote-+ ".LXA for the Lagrange multiplier to lhe
Morse and Milnef2] reported an additional, independent fixed volume fraction and denoteé=(eK,m)/72. For e

contribution; .~ — (3/2)InL2 to the free energy of a single >_,u_>0 we find a peaked size distribution. In facthas a

vesicle, which is the entropy of the translation modés ( Minimum at

=1). Adding Fyansto F we finally obtain

12u
*
TKAIB+KalKk XA® = ———. (19
Frota™ %4- 1-12|InL%+- .. (13 \/ 52_M2

The volume fraction of vesiclesd(, is the volume frac-

or for its partition function [2xA), tion of small vesicles

7~ AL (TK A3+ K )12, (14)
d=dot+v exp(Ze)f d(xA)xA exd —f(xA)], (20
Using pertubation theory, Park and Lubeng®y} found
the fixed pointx* =0, Kx~72/m and «* =18/ for a flat
geometry R—). We estimate the free energy of a vesicle
at the critical point by replacing the couplings by their fixed-
point values. Although a single vesicle cannot become criti-
cal, the ensemble of vesicles shows critical behavior due to
the presence of arbitrarily Iargg vesicles. This yields a diver
gent size distributiom(N)~N"° for small sizes. - ~ - Lk x| %
Size distribution So far we have calculated logarithmic inj ,&LNSOAG at the critical pointiy =72/m and Kx/«
contributions to the free energy, responsible for the small
size behavior of the size distribution. We will show now that
for a small but finite fugacity of the defects(i.e., near the
critical point, the size ditribution has a maximum &t

is mainly determined by the minimal valud(xA*)
=12\ e?— u?+ ef,. Consequently we have

2e— 12\ €?— u?—ef1=0 (21)

to lowest order in . Using (21) and the value forf; we

A* ~5.23K, (22)

wherex is proportional to the hexatic correlation length of a
~1/X, i.e., the typical size diverges like~exp(e). vesicle with infinite radius and bending rigidity. The relative
We approximate the contribution of thefluctuations to  width w of the peak is given byw?=(xA*)~2/f"(xA*)

the free energy by an expression with the same behavior fof 1/¢ with f”(xA*) = (€2— 12)%%(12€?), i.e., the peak be-

finite x and largelL : comes sharp at the critical poiat—o. Moreover, the peak
dominates the size distribution while small sizes are sup-

2
]:SZE Ldy(2y+ 1) In yy+ D+ R+ Kalwc| pressed by a factor
2 Jo KaL2
(19 d)i:exp[f(O)—f(xA*)]
0

The integral is easily calculated fdr large, A,X,Kp,xk=
const and read@up to irrelevant terms

=exp(12e — 12\ e’ —u?)—x for e—o.
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To conclude, we concentrated on the orientationally dishumerical evaluation of the free energyl) together with
ordered phase of spherical vesicles near the hexatic-liquithe volume fraction constraint and is beyond the scope of
transition, extending existing literature about the orderedthis article.
hexatic phase, sefll,16 and the state-of-the-art Monte  We hope that the anticipated diverging typical length
Carlo simulation[17]. We considered a fluctuating, nearly scale and the size distribution can be unveiled experimen-
spherical vesicle with orientational degrees of freedom anqla"y by techniques used if18] and[19]. The latter studies
calculated the size dependence of its free energy, studyingifie freezing of tubular structures. The vesicle phase provides
saddle point approximation plus Gaussian fluctuations of an excellent opportunity to literally see the hexatic-liquid
Sine-Gordon field theory in a fluctuating geometry. We cal-yransition by looking at the typical vesicle size—the vesicles

culated the logarithmical size dependence of the free enerdyouid blow up while approaching the critical point from
near the critical point. The corresponding size distribution ofyoye.

a diluted suspension of vesicles is divergent for small sizes.

We found that, in addition to the small size divergence, Itis a pleasure to thank David R. Nelson and Michael W.
the size distribution has a peak, which becomes sharp at tHeeem for suggesting the problem, for many discussions and
critical point. The typical size diverges like the inverse comments, and to acknowledge discussions with Deniz Er-
fugacity of the defect, which corresponds to the square of théas, Jacques Prost, and Ralf Blossey. This work was sup-
correlation length in a flat rigid geometry. ported by the Deutsche Forschungsgemeinschaft through

With increasing distance to the critical point this peakGrant No. FO 259/1-1, and the U.S. National Science Foun-
should eventually disappear. However, a proof requires thdation, through Grant No. DMR 94-17047.
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