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Size distribution of vesicles with topological defects
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We study a diluted suspension of nearly spherical vesicles near the temperature where the in-plane orienta-
tional ~hexatic! order is destroyed through an unbinding of pairs of disclinations. We focus on the size
distribution of the vesicles, extending a well known theory for fluid membranes. At sufficiently low tempera-
tures, the vesicles are in the hexatic phase, with, however, twelve extra~positive! disclinations due to a
topological constraint. Above a certain temperature, additional unbound pairs of disclinations emerge. We
expect an unusual vesicle size distribution with a typical vesicle size, which diverges like the hexatic correla-
tion length just above the liquid-to-hexatic transition temperature.@S1063-651X~98!51004-5#

PACS number~s!: 87.22.Bt, 02.40.2k, 61.72.Lk
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We consider a system of water and a fixed volume fr
tion of amphiphilic molecules, like phospholipids, which a
semble themselves into a secondary structure consistin
bilayers. This system will show up a tertiary structure—t
conformation of the bilayers. Depending on temperature
finds vesicles, multilamellar phases, onions, and biconti
ous phases. At sufficiently high temperatures, the bilayer
haves as a two-dimensional curved fluid, well described
the Helfrich Hamiltonian~see, e.g., Ref.@1#!. In this model,
the energy per area of a membrane is proportional to
square of the mean curvature. Since the curvature energ
scale invariant, the tertiary structure has no preferred len
scale or typical size. The distribution of the length scales
determined by logarithmic corrections mainly due to sha
fluctuations.

The size distributionn(N) ~the numerical density o
vesicles of sizeN! of a diluted suspension~ideal mixture! of
vesicles is given by a Boltzmann factor@2#,

n~N!5ZN exp~2mN!5exp~2mN2FN!. ~1!

N is the number of amphiphilic molecules of a vesicle,m is
the Lagrange multiplier to the constrained volume fractionf
~V denotes the volume,v the molecular volume!:
v(Nn(N)N5Vf andZN is the partition function of the in-
ternal degrees of freedom of a single vesicle of sizeN, FN
the corresponding free energy. The temperature is set to
throughout the paper (kBT51).

In an exhaustive study, Morse and Milner@2# calculated
the logarithmic contributions to the free energy of a nea
spherical fluid vesicle and foundF;(7/6)lnN and for the
size distribution of a diluted suspension of spherical vesic

n~N!5N27/6 exp~2mN!. ~2!

Within this theory most of the vesicles have a size near
microscopic cutoff; there are only few large vesicles. D
namical aspects of the equilibration of a initially monod
persive ensemble are a concern of@3#.

*Present address: Institut fu¨r Theoretische Physik IV, Heinrich–
Heine–Universita¨t Düsseldorf, Universita¨tsstrasse 1, D-40225 Du¨s-
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Upon lowering the temperature or varying external con
tions such as salt concentration or addition of cosurfacta
this picture could change, provided the membranes unde
an internal liquid to hexatic transition to a phase with qua
long-ranged orientational order@4–11#. Near the transition,
the orientational correlation length provides a typical leng
scale, diverging right at the transition.

Tangential orientational order on a curved manifold
frustrated and might have topological defects~disclinations!.
These topological defects are uniquely characterized b
chargelike quantity—the total change of the orientati
while going around the defect. The sum of all charges o
manifold is constrained and depends on the topology of
manifold—it is given by(qi5*dAK, where the topological
invariant*dAK is the integral over the Gaussian curvatu
According to the Gauss-Bonnet theorem*dAK54p(12g)
whereg is the genus of the surface~number of handles!.

Hexatic order on a manifold with spherical topology h
an excess of 12 positive disclinations~charge
q51p/3!—recalling a soccerball. A periodic bicontinuou
phase~a configuration similar to the Fermi surface of copp
in k space—a plumber’s nightmare! has an extensive numbe
of ~negative! excess charges proportional to the number
unit cells.

The topological defects interact through the tw
dimensional Coulomb law, where the interaction grows log
rithmically with distance. These interactions are screened
the presence of smaller dipoles of defects~Debye-Hückel
screening! and shape fluctuations@12#. In fact, a disclination
can lower its energy by a shape deformation~buckling!
@7,10#. Positive defects tend to concentrate in regions w
positive Gaussian curvature, while negative disclinatio
prefer saddle-shaped regions with negative curvature.

The main part of this paper is devoted to the detai
analysis of these ideas—we study the finite size behavio
a Sine-Gordon field theory on a sphere and the coup
between fluctuations of the hexatic order and shape fluc
tions. Finally we will give arguments for an unusual si
distribution with a typical length scale proportional to th
correlation length of the hexatic order.

Sine-Gordon field theory. In order to model hexatic order
ing on a membrane, we should consider the field of ang
modulo 60°, describing the direction of the nearest neighb
R3742 © 1998 The American Physical Society
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of a lipid molecule. This orientational field can be deco
posed into a smooth spin-wave part and the vortices.
latter behave as a Coulomb gas, which can be transform
using a Hubbard–Stratonovich transformation~see, e.g., Ref.
@12#!, into a Sine-Gordon field theory. The above–mention
spinwave part is exactly canceled by the transformation.
end up with a Hamiltonian consisting of the elastic ene
and a covariant Sine-Gordon functional with an extra c
pling of the Sine-Gordon fieldF ~related to the internal elec
tric potential of the charges! to the Gaussian curvature due
the frustration of tangential order@9,12#:

H5
1

2KA
E dAgi j ] iF] jF2xE dA cosS p

3
F D

1 i E dAKF12kE dAC2 ~3!

where KA is the hexatic stiffness anda is a microscopic
length witha2N5A54pR2. gi j denotes the inverse metri
tensor on the manifold with indicesi , j P$1,2% and dA
5d2sAg the surface area element.C is the mean curvature
~the trace of the curvature tensor divided by two! andk the
bending rigidity.x[a22exp(2e) is the fugacity of the de-
fects, thuse is the energy needed to create the core o
defect.

We will describe shape fluctuations in normal gauge

dXW ~s!5h~s!NW ~s!, ~4!

where XW is the parametrization of the rigid sphere,NW the
corresponding normal vector, andh(s) the normal displace-
ment.

For a geometry with constant nonzero Gaussian curva
K ~like a sphere!, the Sine–Gordon functional~3! has a non-
trivial spatially homogeneous saddle pointdH/dF50:

p

3
x sinS p

3
F0D1 iK 50. ~5!

This equation has a purely imaginary@13# solutionF0 . We
expand the functional~3! around the saddle point up to th
second order inw[F2F0 and in the shape fluctuationsh
and obtain@2,14#

H5F01
k

2 E dADh~Dh12C2h!

1 i E dAC~Dh12C2h!w

1
1

2KA
E dAw~2Dw!1tw2, ~6!

where we ignored a termd*dAcos(pF0/3) as a contribution
to the surface tension@1,2#. D,C,dA now refer to the rigid
sphere, thusC521/R and D is the spherical Laplacian
which has a spectrumR22l ( l 11),l 50,1,2, . . . with multi-
plicity 2 l 11.
F0 is the value of the Hamiltonian at the saddle point:
-
e
d,

d
e
y
-

a

re

F058pk2A~xA!21122112 ln@121A~xA!21122#

212 ln~xA!, ~7!

using Eq.~5!. The fieldw has a masst with

t5KAxS p

3 D 2

cosS p

3
F0D5KAS p

3 D 2Ax21S 3K

p D 2

. ~8!

Approaching the critical point from above, the fugacityx
vanishes. For an infinite radiusK→0, t is proportional to the
fugacity of the defectsx. For zero fugacity, on the othe
hand,t is proportional to 3K/p512/(4pR2), which is the
numerical density of the excess charges. Fork→` the sys-
tem has a hexatic correlation lengthj5t21/2, which grows
with vanishingx until it saturates at a value of the order
the mean distance of the excess charges.

We integrate over the fieldsh,w in two steps in order to
obtain additional information about the effective elastic co
stants. Eliminating the fieldw by performing a Gaussian in
tegration we obtain a new effective action for the shape fl
tuations~up to a constant!:

Hund,eff5
k

2R2 (
l ,m

@ l ~ l 11!22# l ~ l 11!uh l ,mu2

1
KA

2R2 (
l ,m

@ l ~ l 11!22#2

l ~ l 11!1tR2
uh l ,mu2, ~9!

where we expandedh into spherical harmonics. For mode
with l ( l 11)!tR2, i.e., modes with a wavelength large
than the bare hexatic correlation length, the effective bend
rigidity is approximatelykeff5k1KA /(tR2). Thus the pres-
ence of orientational order stiffens the vesicle on long
length scales.

On the other hand, if we eliminate the undulation mod
first, we find an effective action~again using spherical har
monics!

Heff5
1

2k (
l>2,m

S 12
2

l ~ l 11! D uw l ,mu2

1
1

2KA
(
l ,m

@ l ~ l 11!1tR2#uw l ,mu21Fund1F0 ,

~10!

whereFund is the free energy of the undulation modes of
spherical membrane, already calculated in@2# to behave like
Fund;(8/3)logA. The h l ,m integration extends over thel
>2 modes@2# due to the translational and scale invariance
the curvature energy. A finite bending rigidity essentia
shifts the mass of thew-field teff5t1KA /(kR2), which is
equivalent to a reduction of the hexatic correlation leng
@12#. A small bending rigidity promotes the creation of d
fects due to buckling, thus increases the density of defec

We yield the following free energy for a vesicle:
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F5Fund1F01 1
2 lnS tR2

KAL2D 1 1
2 (

l 51

L21

~2l 11!

3 lnF l ~ l 11!1tR2

KAL2
1

1

kL2 S 12
2

l ~ l 11!D G , ~11!

whereL5R/a@1 is a UV cutoff (L2}A).
For x→0 the coefficienttR2 does not depend on th

vesicle sizeA. This allows a simple expansion of the fre
energy for largeL. By contrast, for finitex the coefficients of
the L expansion itself depend on the sizeA, which compli-
cates the discussion considerably and will be postpone
the next paragraph.

We examined the free energy analytically@15# for L large
andx→0, A,KA ,k5 const and found

F5constL21Fund212 lnL2

1S pKA/31KA /k

2
2

1

6D lnL21•••, ~12!

where we used the small argument behavior of Eq.~7!. The
term constL2 simply shifts the chemical potential; howeve
this does not affect the size distribution of vesicles, since
volume fraction, not the chemical potential is held fixed.

Morse and Milner@2# reported an additional, independe
contributionFtrans;2(3/2)lnL2 to the free energy of a singl
vesicle, which is the entropy of the translation modesl
51). AddingFtrans to F we finally obtain

Ftotal5S pKA/31KA /k

2
11212D lnL21••• ~13!

or for its partition function (L2}A),

Z;A112~pKA/31KA /k!/2. ~14!

Using pertubation theory, Park and Lubensky@9# found
the fixed pointx* 50, KA* '72/p and k* 518/p for a flat
geometry (R→`). We estimate the free energy of a vesic
at the critical point by replacing the couplings by their fixe
point values. Although a single vesicle cannot become c
cal, the ensemble of vesicles shows critical behavior du
the presence of arbitrarily large vesicles. This yields a div
gent size distributionn(N);N23 for small sizes.

Size distribution. So far we have calculated logarithm
contributions to the free energy, responsible for the sm
size behavior of the size distribution. We will show now th
for a small but finite fugacity of the defectsx ~i.e., near the
critical point!, the size ditribution has a maximum atA
;1/x, i.e., the typical size diverges likeA;exp(e).

We approximate the contribution of thew fluctuations to
the free energy by an expression with the same behavio
finite x and largeL:

FS5
1

2 E
0

L

dy~2y11! lnS y~y11!1tR21KA /k

KAL2 D .

~15!

The integral is easily calculated forL large, A,x,KA ,k5
const and reads~up to irrelevant terms!
to

e

i-
to
r-

ll
t

or

FS5 1
2 ~tR21KA /k!

1 1
2 ~tR21KA /k!lnS L2

tR21KA /k
D 1••• . ~16!

We have tR25(pKA/36)A(xA)21122 and L2

5xA exp(e)/4p using the~previous! definitionsL5R/a and
x5a22exp(2e). Approaching the critical point from above
the core energye diverges and the terms proportional toe
become the dominant contributions to the free energy

F;S KAp

72
A~xA!211221 f 1D e, ~17!

wheree f 1 consists of constant terms proportional toe. We
match this expression forx→0 with ~13! and obtain f 1
5KA /(2k)211. The expression for the free energy can
written asF;e(R/j)21•••, which is roughly the number
of defects times their core energy (j5teff

21/2 is the correlation
length of the hexatic order!. Keeping only the dominan
term, the size distribution readsn(xA)5exp@2f(xA)# with

f ~xA!5 ẽ A~xA!211222mxA1e f 11••• . ~18!

where we wrote1mxA for the Lagrange multiplier to the
fixed volume fraction and denotedẽ 5(eKAp)/72. For ẽ
.m.0 we find a peaked size distribution. In factf has a
minimum at

xA* 5
12m

A ẽ 22m2
. ~19!

The volume fraction of vesicles (f0 is the volume frac-
tion of small vesicles!,

f5f01v exp~2e!E d~xA!xA exp@2 f ~xA!#, ~20!

is mainly determined by the minimal valuef (xA* )

512A ẽ 22m21e f 1 . Consequently we have

2e212A ẽ 22m22e f 150 ~21!

to lowest order in 1/e. Using ~21! and the value forf 1 we
find m'0.4e at the critical pointKA* 572/p and KA* /k*
54, thus

A* '5.23/x, ~22!

wherex is proportional to the hexatic correlation length of
vesicle with infinite radius and bending rigidity. The relativ
width w of the peak is given byw25(xA* )22/ f 9(xA* )
}1/e with f 9(xA* )5( ẽ 22m2)3/2/(12ẽ 2), i.e., the peak be-
comes sharp at the critical pointe→`. Moreover, the peak
dominates the size distribution while small sizes are s
pressed by a factor

f

f0
5exp@ f ~0!2 f ~xA* !#

5exp~12ẽ 212A ẽ 22m2!→` for e→`.
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To conclude, we concentrated on the orientationally d
ordered phase of spherical vesicles near the hexatic-liq
transition, extending existing literature about the order
hexatic phase, see@11,16# and the state-of-the-art Mont
Carlo simulation@17#. We considered a fluctuating, near
spherical vesicle with orientational degrees of freedom
calculated the size dependence of its free energy, studyi
saddle point approximation plus Gaussian fluctuations o
Sine-Gordon field theory in a fluctuating geometry. We c
culated the logarithmical size dependence of the free en
near the critical point. The corresponding size distribution
a diluted suspension of vesicles is divergent for small siz

We found that, in addition to the small size divergen
the size distribution has a peak, which becomes sharp a
critical point. The typical size diverges like the inver
fugacity of the defect, which corresponds to the square of
correlation length in a flat rigid geometry.

With increasing distance to the critical point this pe
should eventually disappear. However, a proof requires
a

dd
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d
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e

numerical evaluation of the free energy~11! together with
the volume fraction constraint and is beyond the scope
this article.

We hope that the anticipated diverging typical leng
scale and the size distribution can be unveiled experim
tally by techniques used in@18# and @19#. The latter studies
the freezing of tubular structures. The vesicle phase prov
an excellent opportunity to literally see the hexatic-liqu
transition by looking at the typical vesicle size—the vesic
would blow up while approaching the critical point from
above.

It is a pleasure to thank David R. Nelson and Michael
Deem for suggesting the problem, for many discussions
comments, and to acknowledge discussions with Deniz
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